A RAPID ANOMERIZATION OF ALKYL PER-O-BENZYL- β -D-GLUCOPYRANOSIDES BY TITANIUM TETRACHLORIDE

Naohiko MORISHIMA, Shinkiti KOTO,* and Shonosuke ZEN School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo 108

Alkyl per-O-benzyl- β -D-glucopyranosides are rapidly anomerized into the corresponding α -anomer by TiCl₄ in CH₂Cl₂ at 25 °C. Replacement of the benzyl group at 0-6 by acetyl one dramatically slows the reaction but those of other benzyl groups at 0-2, 0-3, and 0-4 do not. A plausible scheme for the reaction in which benzyloxymethylene group and ring oxygen play an important role is presented.

Anomerization 1) of per-0-acetyl- β -D-glucopyranosides is one of the practical methods for preparing the α -glucosides. 2) However, such reaction of per-0-benzyl- β -D-glucopyranosides and similar compounds has rarely been investigated. 3) Continuing synthetic studies using carbohydrate protected by benzyl group, 4) it has been found that TiCl₄ rapidly anomerized alkyl per-0-benzyl- β -D-glucopyranosides in CH₂Cl₂ into the corresponding α -anomers. The reaction finished within a few seconds at 25 °C as shown in Table 1.

Replacement of the benzyl group at 0-6 by acetyl one has been found to retard the anomerization considerably, but those of other benzyl groups at 0-2, 0-3, and 0-4 did not show such effect as the data in Table 1 show.

1,2-Dibenzyloxyethane (1) and 1-benzyloxy-2-methoxyethane (2) which have $C_6H_5CH_2-0-CH_2-C-0-$ moiety structurally corresponding to the benzyloxymethylene group and the ring oxygen of methyl per-0-benzyl- β -D-glucopyranoside significantly impeded its anomerization, but 1,2-dibenzyloxycyclohexane (3) having only benzyloxymethine groups moderately) and 1-acetoxy-2-benzyloxyethane (4) hardly showed such effect; the order of ligating ability of the additives toward TiCl₄ is 1 = 2 > 3 > 4.

Based on these findings, a plausible scheme for anomerization of alkyl per-0-benzyl-β-D-glucopyranosides is postulated as illustrated in Fig. 1.

Bn Bn TiCl4

Bn Bn TiCl4

Bn Bn TiCl4

Bn Bn TiCl4

Bn O OB

Bn

Table 1. Results of Experiments a, b)

β-Glucosides	(TiCli) c)	Additives ^d)	Reaction Time	α-Cont.e) Recov.	BnO OMe
5	0.2		300 s	42%	96%	5
	0.5		300	89	93	~OAc
	1.0		2 ^{a¹})	₆₈ i)	78 ^{g)}	BnO
	1.0		₄ a¹)	90 ⁱ⁾	78 ^{g)}	BnO OMe
	1.0		10	96 ⁱ⁾	78 ^{g)}	6
	1.0		300	96	77 ^{g)}	∽ ∽ OBn
	1.0	1	4a1)	7	87	Ac O
	1.0	2	4 ^{a¹})	8	86	Ac O OMe
	1.0	3	4 ^{a¹})	21	84	AcÓ
	1.0	4	₄ a¹)	57	84	7
<u>6</u>	1.0		300	4	70 ^{h)}	OBn
7	1.0		300	98	87	BnO OCh
8	1.0		2 ^{a¹})	100 ⁱ⁾	87	BnÒ
						8

a) The reaction (0.1 mmol/l ml-solv.) was quenched with excess iced aq NaHCO3, followed by extraction with benzene and chromatography on silica gel. 4) Short reactions were done as follows: the solvent (and an additive) was injected into a stoppered vial containing a starting material and then TiCl, in a syringe was shot quickly into a stirring solution at removal of the stopper, followed by pouring a large excess of iced aq NaHCO3 into the reaction mixture. The values in ' α -Cont.' and 'Recov.' are based on the weight of fractions containing the glucosides after chromatography of the reaction mixture. b) Ac = acetyl, Bn = benzyl, Ch = cyclohexyl, Me = methyl. c) Molar ratio of TiCl, to the starting β -glucoside. d) The amount of additives was equimolar to β -glucoside. e) Mol% of the α -anomer in a mixture of the unchanged β -glucoside and the anomerized α -one. f) Sum of the recovery of the unchanged β -glucoside and the yield of the anomerized α -one. g) De-O-benzylation products such as 3,4,6-tri-O-benzyl- α -D-glucopyranoside were isolated. h) Unidentified de-O-benzylation products were formed. i) Based on these data, effects of moisture on ' α -Cont.' is regarded as negligible in short reactions (\leq 4s).

References and Footnote.

- 1) R.U.Lemieux, Adv. Carbohydr. Chem., $\underline{9}$, 1 (1954), 'Molecular Rearrangements', ed. by P.deMayo, Intersci. Pub., 1964, p.709; B.Capon, Chem. Rev., $\underline{69}$, 407 (1969); W.G. Overend, 'The Carbohydrates, Chemistry and Biochemistry', 2nd ed., ed. by W.Pigman and D.Horton, Academic Press, 1972, vol. IA, p.310.
- 2) E.Pacsu, J. Am. Chem. Soc., <u>52</u>, 2563, 2568 (1930); B.Lindberg, Acta Chem. Scand., <u>3</u>, 1355 (1949); J.J.Schneider, Carbohydr. Res., <u>12</u>, 369 (1970).
- 3) M. Kawana and S. Emoto, Tetrahedron Lett., 1978, 1561.
- 4) S.Koto, N.Morishima, and S.Zen., Bull. Chem. Soc. Jpn., 52, 784 (1979).
- 5) Apparently because benzyloxymethine groups inlaid in cyclohexane have less freedom in their bidentate ligation with TiCl4 than benzyloxymethylene ones do.